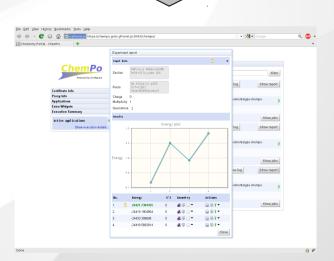
Virtual Laboratory for in silico experiments in Computational Chemistry

Daniel Harężlak¹, Joanna Kocot¹, Klemens Noga¹, Mariusz Sterzel¹, Tomasz Szepieniec¹, Marian Bubak^{1,2}

> ¹ACC CYFRONET AGH, ul. Nawojki 11, 30-059 Kraków, Poland

²Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland


Outline

- Computational chemistry and the Grid
- State-of-the-art
- Requirements
- Architecture
- Results
- Conclusions and future work

Computational chemistry and the Grid

- Computational Chemistry uses first principles chemistry packages available on the Grid (Gaussian, GAMESS, TURBOMOLE)
- Grid is still mainly available through command line interfaces (voms-proxy-init, glite-wms-job-submit, glite-wms-job-status)
- Adoption to the Grid environment by nonexperts is difficult
- Let us build a web-based problem solving environment facilitating the use of Grid ... but not only that

```
| In the west compared to the part of the property of the part of
```


State-of-the-art

- **WebMO** (www.webmo.net)
 - Desktop and Web access
 - Supports main computational chemistry applications
 - Does not support Grid or local queues infrastructures
- **ECCE** Extensible Computational Chemistry Environment (*ecce.pnl.gov*)
 - Only desktop access
 - Supports main computational chemistry applications
 - Supports many queue management systems (PBS, LSF, NQE, etc.)
 - Does not use Grid infrastructures
- CCG Computational Chemistry Grid (www.gridchem.org)
 - A virtual organization which is a part of Teragrid
 - GridChem Java client which can be run as a WebStart application
- **P-GRADE** Development and Execution of Parallel Applications (www.p-grade.hu)
 - A Grid-oriented solution

Description of the solution - requirements

- Supports main chemistry packages
 - Gaussian
 - GAMESS
 - TURBOMOLE
 - -
- Is accessible through a web interface
 - All Grid-related operations should be embedded (proxy generation, job submission and status monitoring, LFC catalog operation)
 - Persists information about executed jobs between web sessions
- Enables *user-centric processing* rather than grid-centric
 - It should not be yet another Grid job submission tool
 - Supports inter-application geometry passing
 - Provides automated report summaries
 - Covers Grid complexity
- Supports annotations through user free-text tagging

Description of the solution – architecture (1/2)

- Uses *gLite* for Grid job management
 - A set of Grid APIs is used (LFC, WMS, VOMS)
- Job submission and monitoring implemented as a separate layer for better error handling
 - GridSpace platform used
 - Each application backed by a separate script
- Application model realized by using SINT (Semantic Integration Tool)
 - Basic concepts such as geometry, basic and detailed reports, input parameters, annotations are modeled
- Interactive graphical user interfaces are used
 - GWT (Google Web Toolkit) is used as the user front-end technology

Description of the solution – architecture (2/2)

Authentication/Authorization Performed Through Grid Certificate

https://

Chemistry Portal DB ExpRepo LFC **GSEngine VOMS** Connector Client Client Client Client Manage Get Manage Store **Execute** Grid **Predefined Experiment** Execution **Experiments** Proxy **Experiments** Details Data **GridSpace** I FC **UI** Machine API Runtime ChemPo Experiment (gLite) **WMS** Manage Repository DB lobs API

Demo

- Demo contents
 - Getting the proxy
 - Preparing geometries
 - Running Grid applications
 - Viewing results
 - Analyzing reports
- Switching to demo ...

Conclusions and future work

- An integrated environment for planning and executing applications in computational chemistry was presented
 - Covers the complexity of Grid infrastructure
 - Combines main chemistry packages in one integrated environment
 - All this available through *an easily accessible web interface*
- Future work includes
 - Refinement of current application scripts for better stability and performance
 - Integration with *MyProxy server*
 - Preparation and testing of *TURBOMOLE* scripts
 - Improvement of *the web interface*

References

T. Gubala, M. Bubak, P.M.A. Sloot: Semantic Integration of Collaborative Research Environments, In: M. Cannataro (Ed.) Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and Healthcare, Information Science Reference, 2009, IGI Global

Marian Bubak et al.,: Virtual Laboratory for Collaborative Applications, In: M. Cannataro (Ed.) Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine and Healthcare, Information Science Reference, 2009, IGI Global